Spontaneous Deletion of an “ORFanage” Region Facilitates Host Adaptation in a “Photosynthetic” Cyanophage
نویسندگان
چکیده
Viruses have been suggested to be the largest source of genetic diversity on Earth. Genome sequencing and metagenomic surveys reveal that novel genes with unknown functions are abundant in viral genomes. Yet few observations exist for the processes and frequency by which these genes are gained and lost. The surface waters of marine environments are dominated by marine picocyanobacteria and their co-existing viruses (cyanophages). Recent genome sequencing of cyanophages has revealed a vast array of genes that have been acquired from their cyanobacterial hosts. Here, we re-sequenced the cyanophage S-PM2 genome after 10 years of near continuous passage through its marine Synechococcus host. During this time a spontaneous mutant (S-PM2d) lacking 13% of the S-PM2 ORFs became dominant in the cyanophage population. These ORFs are found at one loci and are not homologous to any proteins in any other sequenced organism (ORFans). We demonstrate a fitness cost to S-PM2WT associated with possession of these ORFs under standard laboratory growth. Metagenomic surveys reveal these ORFs are present in various aquatic environments, are likely of cyanophage origin and appear to be enriched in environments from the extremes of salinity (freshwater and hypersaline). We posit that these ORFs contribute to the flexible gene content of cyanophages and offer a distinct fitness advantage in freshwater and hypersaline environments.
منابع مشابه
Transcriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter
HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...
متن کاملPrevalence and Evolution of Core Photosystem II Genes in Marine Cyanobacterial Viruses and Their Hosts
Cyanophages (cyanobacterial viruses) are important agents of horizontal gene transfer among marine cyanobacteria, the numerically dominant photosynthetic organisms in the oceans. Some cyanophage genomes carry and express host-like photosynthesis genes, presumably to augment the host photosynthetic machinery during infection. To study the prevalence and evolutionary dynamics of this phenomenon, ...
متن کاملModeling the Fitness Consequences of a Cyanophage-Encoded Photosynthesis Gene
BACKGROUND Phages infecting marine picocyanobacteria often carry a psbA gene, which encodes a homolog to the photosynthetic reaction center protein, D1. Host encoded D1 decays during phage infection in the light. Phage encoded D1 may help to maintain photosynthesis during the lytic cycle, which in turn could bolster the production of deoxynucleoside triphosphates (dNTPs) for phage genome replic...
متن کاملViruses Inhibit CO2 Fixation in the Most Abundant Phototrophs on Earth
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most numerous photosynthetic organisms on our planet [1, 2]. With a global population size of 3.6 × 10(27) [3], they are responsible for approximately 10% of global primary production [3, 4]. Viruses that infect Prochlorococcus and Synechococcus (cyanophages) can be readily isolated from ocean waters [5-7] and freq...
متن کاملGene Expression Patterns during Light and Dark Infection of Prochlorococcus by Cyanophage
Cyanophage infecting the marine cyanobacteria Prochlorococcus and Synechococcus require light and host photosystem activity for optimal reproduction. Many cyanophages encode multiple photosynthetic electron transport (PET) proteins, which are presumed to maintain electron flow and produce ATP and NADPH for nucleotide biosynthesis and phage genome replication. However, evidence suggests phage au...
متن کامل